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An inherently unstable jet impinges upon a leading edge oscillating at controlled 
frequency and displacement amplitude, giving rise to two coexisting instability waves 
in the jet: one at the self-excited frequency of the jet ; and the other at the controlled 
frequency of the edge displacement. Correspondingly there is an unsteady loading 
of the edge at these two frequencies. Simultaneous edge pressure and jet velocity 
measurements allow insight into the upstream influence, arising from the edge 
loading, on the jet oscillations. This upstream influence initially distorts the jet at the 
nozzle exit and causes non-homogeneous phase variations along the streamwise 
extent of the jet. A simple superposition model which includes upstream-induced 
velocities and instability-wave velocities effectively simulates these distortions. 

The jet oscillations synchronize with the frequency of the controlled edge oscil- 
lations for excitation frequencies close to those of the natural jet oscillations. 
Measurement of the pressure amplitudes on the edge surface shows resonance of the 
component at the excitation frequency within the synchronization range, and 
attenuation of the component at the self-excited frequency close to the synchroniza- 
tion range. Depending on the amplitude of edge displacement, synchronization is 
achieved either by quenching of the self-excited component or by phaselocking of the 
self-excited component to the excitation frequency. Phase measurements between 
edge displacement and surface pressure fluctuation allow determination of the 
direction of energy transfer between the flow and the edge. 

Flow-visualization performed simultaneously with pressure measurements gives 
insight into the relation between impinging vortical structures and pressure fluctua- 
tions. Time-sequence photographs allow analysis of the modulation of the flow 
structure due to coexistence of the self-excited and the externally excited jet 
instabilities. Vortex coalescence involving vortices of like sense, as well as typical 
formations of pairs of counter-rotating vortices, are observed. Retardation of the 
development of the jet vortex pattern occurs when the energy transfer from the flow 
to the edge is a maximum. A t  high excitation frequency, the large-scale jet structure 
recovers to that occurring in absence of edge oscillations. 

1. Introduction - flow and feedback mechanisms of the stationary and 
oscillating leading edge 

The basic features of self-sustained oscillations of a jet incident upon an edge were 
defined over two decades ago in a series of investigations by Powell (1961, 1962, 
1965). In essence, the inherently unstable jet impinges upon a stationary edge; the 
interaction of the incident jet with the edge serves as a source of peri~dic upstream 
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influence to the disturbance-sensitive region of the jet at the nozzle lip. In turn, 
selective amplification in the jet controls the growth of the jet instability downstream 
of the nozzle. The periodicity of the upstream influence and thereby of the initial 
excitation in the sensitive region near separation leads to highly organized jet-edge 
interactions. Much attention has been focused on various details of this class of flows, 
as assessed by Rockwell (1983). Recent advances have characterized the streamwise 
evolution of the unstable jet including disturbance growth rates (Lucas & Rockwell 
1984), as well as streamwise phase variations (Shields 1967), allowing comparison 
with linear stability theory. Regarding the impingement of the oscillating jet upon 
the leading edge, attention has been given to mechanisms of vortex-edge interaction 
(Lucas & Rockwell 1984) and the consequent unsteady pressure field along the surface 
of the edge (Kaykayoglu & Rockwell 1986). It is this loading upon the edge by the 
unsteady pressure field that determines the character and strength of the upstream 
influence. Since this edge interaction region is central in determining the upstream 
influence, it follows that controlled perturbations of the edge itself would provide 
further insight. 

Figure 1 shows, with a photograph and a schematic, the principle features of 
self-sustained oscillations of the jet impinging upon a stationary edge. The figure also 
induces a control-type representation of the upstream influence. The frequency fl 
designates the frequency at which a disturbance in the shear layer of the jet undergoes 
maximum amplification and thereby leads to an instability wave. This instability of 
the jet initially takes the form of an amplified undulation; at sufficiently high 
Reynolds number and over long enough steamwise distance, the instability leads to 
formation of one or more vortices upstream of the edge. The unsteady flow patterns 
repeat alternatingly and symmetrically on either side of the edge regardless of the 
character of the jet instability approaching the edge. This jetxdge interaction in turn 
causes pressure fluctuations on the lower and upper sides of the edge which are ~t out 
of phase with respect to each other. The resulting unsteady pressure loading 
determines the dominant contribution to the upstream-induced disturbances felt at 
the nozzle exit, i.e. upstream influence. If, as for the case examined in this paper, 
a typical acoustic wavelength is much larger than the impingement length L, this 
upstream influence is felt essentially instantaneously throughout the flow domain and 
the entire process may be viewed as incompressible. 

According to the concept advanced by Powell (1961) this upstream influence 
emanates from the leading-edge region and can be represented by a distribution of 
dipole sources along the edge. Their strength is directly related to the pressure 
distribution on the edge surface. In the actual case with jet flow, the jet will be 
exposed to such a dipole-induced flow field causing a transverse motion of the jet,. 
According to Powell: ‘If this motion were uniform along the length of the jet. it  could 
induce no distortion of the jet, simply translating it en masse; with the motion 
attributable to a dipole at the edge, the lateral motion must increase as the edge is 
approached and this must cause some distortion of the stream. But the greatest and 
really significant distortion occurs as the jet leaves the nozzle, since the part within 
is altogether constrained from motion while that without moves with the surrounding 
fluid ’. Thus, the dipole-induced transverse velocity, enhanced in the vicinity of the 
nozzle exit by the presence of the nozzle, causes the initial perturbation of the jet. 
For purposes of illustration, figure 2 shows computed streamlines that are obtained 
by approximating the induced flow field and its distortion by the nozzle with a single 
dipole at the edge and by applying conformal mapping as suggested by Powell. 

In general, the velocity and pressure fluctuations of the jet will contain contribu- 
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FIGURE 1. Self-sustained oscillations of a jet impinging upon a stationary edge. 

I 

FIGURE 2. Approximate distortion of the dipole-induced streamlines by the presence of the 
nozzle (computed after Powell 1961). 

tions from the edge loading-induced upstream influence as well as those arising from 
the jet instability. Bechert (1983) and Bechert k Stahl(l984) assert, in an analogous 
study of a mixing layer subjected to external, piston-like forcing that the pressure 
and velocity fluctuations can be decomposed into fluctuations induced by forcing and 
into those of the instability wave. Experimental evidence for the simultaneous 
presence of the upstream-induced field and the jet instability wave will be given 
herein in the section on velocity measurements, where a simple superposition model 
will be presented. 

The foregoing description of the physics of the upstream influence and of the initial 
perturbation in the most receptive region of the jet is true for any distribution of 
fluctuating singularities on the edge with opposite sign on the lower and upper surface 
of the edge. D. G. Crighton (1984, private communication) has carried out an analysis 
employing a vortex-sheet representation of the jet embodying distortion effects both 
in the vicinity of the nozzle exit and the downstream leading edge ; he finds the source 
at  the edge to be of the split-multipole type. Herein, we employ the dipole concept 
to provide a view as simplified as possible, since the basic principle of jet excitation 
by upstream influence remains the same. 

In the case of forced oscillations of the leading edge, there will be additional 
pressure loading on the edge a t  the frequency of oscillation and, accordingly, the 
upstream influence will also include this component. For purposes of illustration, we 
can consider the simplest case of edge oscillations a t  a frequency f, in a quiescent 
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fluid. Imposing the constraint of small amplitudes of oscillation and neglecting 
viscosity, the pressure fluctuations at the frequency f, on the upper surface of the 
edge will be in phase with the upward displacement and on the lower surface, the 
pressure will be x out of phase. The induced potential-flow field can be modelled with 
a dipole distribution on the edge. Simplifying this distribution with a single, 
fluctuating dipole and furthermore neglecting presence of the nozzle, we can write 
for the potential: 

-7 # ( t )  = y cos 2nfe t - 
7 2 + 6 2 ’  

where y is the dipole strength and 6, q are coordinates according to figure 2. 
The velocities v in the 7-direction are 

Along the jet centreline, 

(3) 
I [v],-o = - y -  cos 2xfet. 

E2 
Thus, velocities induced on the negative 6-axis (jet centreline) are x out of phase with 
the dipole fluctuations. 

Applying the unsteady Bernoulli equation, the following expression emerges for 
the pressure fluctuations at f, on the q-axis, which are in phase with the pressures 
on the (supposed) edge surface: 

a# 1 
at 7 

[p(t)],,o = -p- = yp- sin 2xfe t .  (4) 

Comparing (3) and (4) we can conclude that there is a phase difference of between 
the induced velocities on the negative [-axis and the loading upon the edge resulting 
from the pressure fluctuations on the edge surface (loading positive in positive 
7-direction). Experimental evidence for this important relationship will be given in 
$4 and in figure 11. The distortion of the flow field by the presence of the nozzle, of 
course, has no influence on the above-derived phase relation. Again, it must be 
emphasized that the simple dipole enables one to discuss the central features of 
upstream influence, especially phase relations, but does not describe the distorted flow 
field either in the leading-edge region or the vicinity of the nozzle. 

In the actual case of the jet impinging upon the oscillating edge, shown in figure 3 
with a photograph and a schematic, the phase relation between the pressure loading 
and the edge displacement is no longer fixed at a value of zero, as in the above case 
of edge oscillations in a quiescent fluid; i t  now depends upon the phase relation of 
the oncoming jet fluctuations relative to the edge displacement, and thereby the flow 
structure in the leading-edge region. Typically, for frequencies f, of the externally 
driven edge oscillations, sufficiently separated from the frequency fl of the ‘natural ’ 
jet oscillations, we can expect an upstream influence that is composed of contributions 
at the excitation frequency f, and the frequency f,, of self-sustained jet oscillations, 
schematically depicted in figure 3 ; this dual-frequency upstream influence arises from 
the fact that the loading on the edge is dominated by these same two frequency 
components. The relative magnitudes of the contributions at these two components 
will vary depending on the etructure of the incident jet and the local j e k d g e  
interaction. In the region away from synchronization, one expects that, at sufficiently 
low amplitudes of edge displacement, the initial pertubations of the jet a t  the nozzle 
for the two frequency components coexist and be amplified in the jet shear-layer. 
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FIGURE 3. Jet impinging upon the oscillating edge (f, = 4&). 

Correspondingly, there will be modulations of the downstream-travelling waves and 
the associated vortex patterns. Indeed, as will be demonstrated subsequently, the 
periodicity T of the modulated flow patterns is given by the smallest common 
multiple of the two periods T, = l/fe and T, = l / jo .  

On the other hand, if the forced oscillations of the edge are relatively close to the 
frequency fl of the self-sustained oscillations, these two components will not develop 
independently along the jet. Forf, near or a t f l ,  the retirponse of the jet will show 
typical characteristics of the response of a nonlinear, self-excited oscillator (with 
‘natural ’ frequencyfl) subjected to external forcing (at excitation frequencyf,) ; e.g. 
synchronization of the jet oscillations with the edge motion. External forcing of this 
oscillator in the form of a controlled displacement of the edge acts on the fluid at 
the system boundary, namely at the surface of the edge. The energy transferred 
to/from the flow field depends on the phase angle between .the resultant force upon 
the edge surface and the displacement of the edge. This phase angle will undergo 
strong changes when the frequencyf, is nearfl as expected for any oscillator - linear 
or nonlinear - when it is excited near its natural frequency. A primary objective of 
this study is to relate this nonlinear response behaviour of the jet oscillations to the 
detailed flow structure of the jet. 

In summary, there are a number of unexplored features of the edge loading and 
the flow structure arising from an unstable jet impinging on an oscillating leading 
edge. Among them are: the extent to which the excitation at  the frequency f, could 
influence the self-sustained oscillation at fo including the alteration of the value fo 
itself (j, +fl); the possible existence of a range of synchronization and thereby a 
range of resonant response of the jet-edge interaction; the type of phase variation 
between the flow-induced loading and the edge displacement when the jet system 
passes through resonance; the possibility of attenuating the growth rate of the jet 
instability and reduction of the resultant fluctuating loading upon the edge by forced 
oscillations at  an appropriate frequency ; recovery of the self-sustained jet oscillations 
for forcing frequencies f, away from synchronization ; the existence of well-ordered 
modulation patterns in the flow depending on the frequency ratiofe/fo ; and the types 
of vortex-vortex and vortex-leading edge interaction mechanisms associated with 
these modulation patterns. 
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2. Experimental system and instrumentation 
The aims of this investigation were to characterize the response of the fluctuating 

pressures p(t) on the surface of the edge, as well as of the velocity fluctuations v(t) 
upstream of the edge, to forced oscillations of the edge. These measurements are 
interpreted in conjunction with flow visualization of the structure of the jet and its 
interaction with the edge. 

Figure 4 shows an overview of the jeb-edge arrangement. Details of the experi- 
mental system and the water channel are described by Lucas & Rockwell (1984). A 
planar, initially laminar jet issued from the nozzle exit. The ratio of the nozzle depth 
to width was 48, ensuring minimal sidewall effects. The velocity distribution at the 
nozzle exit showed a fully developed parabolic profile corresponding to a ratio of a 
mean velocity U to  a maximum centreline velocity u, of 2:3. The Reynolds number 
based on the nozzle width and the mean velocity U was kept constant in the 
experiments a t  Re = 740. This value of Reynolds number and the impingement 
length L / B  = 9 were chosen to  ensure self-sustained oscillations of the jet a t  a single 
predominant frequency, and t o  allow detailed flow visualization as well as adequate 
resolution of the pressure fluctuations on the surface of the edge. Furthermore, when 
the edge was oscillated a t  a frequency away from that of the self-sustained jet 
oscillation, the measured quantities showed for the above experimental conditions 
only two dominant spectral components, an important consideration for inter- 
relating the flow visualization, the velocity fluctuations in the approaching jet, and 
the pressure fluctuations. 

The frequency of the self-sustained jet oscillations and the occurrence of higher 
modes is sensitive to  variations of the impingement length, as demonstrated by 
Powell (1961). I n  this context, the present investigation with fixed ratio LIB and 
Reynolds number should be considered as representative of the basic features of the 
jet-oscillating edge interaction. 

As schematically depicted in figure 4, the leading edge was oscillated a t  a frequency 
f, by means of a cam arrangement and a variable speed d.c.-motor. The drive and 
the leading edge were stiff enough to avoid any feedback of the fluid forces on the 
motion of the body. The lowest natural frequency of the mechanical system was at 
45 Hz, well above the highest investigated frequency of about 7 Hz. The centre of 
rotation of the leading edge lay 19B downstream of the tip of the edge. Since the 
radius of the edge oscillation was a t  least 120 times larger than the maximum tip 
displacement, the motion of the tip was essentially perpendicular to  the jet centreline. 
The edge displacement was measured with a linear potentiometer. The slight 
distortion of the sinusoidal displacement signal was mainly due to a second-harmonic 
component having an amplitude less than 1 %  of the fundamental. Thus, the 
displacement of the edge can be written as 

(5 )  q(t) = qe  cos z~j’et ,  

where qe = A/B = relative displacement amplitude. Other excitation of the edge, 
besides sinusoidal, was not considered because of the nonlinearity in the response of 
the investigated jet oscillations. 

Concerning the pressure measurements, the amplitudes of the predominant 
spectral components as well as the phase, relative to  the edge displacement, were 
determined. Most of the pressure measurements were taken a t  pressure taps 1.26B 
downstream of the leading edge. Some preliminary measurements were performed a t  
0.38B, showing qualitatively the same type of response as observed for the larger 
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FIGIJRE~. Jetedgearrangement.Re = 2UB/v = 140;B = 3.2 x 10-a;r/e = A / B  = non-dimensional 
displacement amplitude; fl = frequency of self-sustained jet oscillations (oscillating edge) ; fe = 
excitation frequency. 

distance. The selection of these positions was mainly based on measurements of 
Kaykayoglu & Rockwell (1986) who investigated the instantaneous pressure distri- 
butions on a stationary edge. Their investigation showed that the maximum pressure 
amplitude occurred for the investigated instability wavelength within a distance 1.5B 
from the leading edge; moreover, the phase variation of the pressure over a distance 
1.5B downstream of the tip was less than in, demonstrating that measurement of the 
fluctuating pressure at any location in the tip region is representative of the edge 
loading. 

By making redundant measurements on the lower and upper surface it was possible 
to check symmetry conditions and to average the results. The maximum deviation 
of the pressure amplitudes on the lower and upper surface with respect to the 
averaged value was + 5  %, in general it lay between f 1-2 %. Furthermore, as 
demonstrated by Ziada & Rockwell (1983) for an analogous shear-layer configuration, 
and as experienced in preliminary stages of this study, free-surface effects could 
influence the pressure measurements as well as the overall characteristics of the flow 
oscillations. Such effects were avoided by covering the free surface of the test section 
with rigidly mounted styrofoam. 

Calibration of the pressure transducer (Kulite Type XCS-1 90), including recali- 
bration after the measurements, showed a repeatability of better than 1 %. From the 
scatter of the measured amplitudes an overall accuracy of better than f 5 yo can be 
estimated except for the spectral components of pressure having very small 
amplitudes, where the relative error might be higher; such small amplitudes occur 
in the case of quenched, self-sustained pressure fluctuations (figure 6 b) .  

The response characteristics of the measuring system were examined by oscillating 
the edge in still water. These measurements (see figure 5 )  confirmed that there is no 
distortion in amplitude or phase within the investigated frequency range. 

Velocity measurements were focused on the v-component along the centreline of 
the jet (see figure 4) from a position 1 mm downstream of the nozzle to a position 
immediately upstream of the leading edge. The measurements were performed with 
a backscatter laser-Doppler anemometer (LDA) (TSI ; Argon-ion, 2 watts) having a 
beam expander to  optimize the signal-to-noise ratio. The data rate was sufficiently 
high to allow use of the analog output of the counter of the LDA system. 

All displacement, pressure and velocity signals were digitized and processed by a 
minicomputer (DEC-MINC). Aliasing was avoided by appropriate filtering. Power 
spectra and cross-spectra were evaluated, from which the amplitudes of the spectral 
components at f,, and f, were determined, as well as phase shifts between pressure 
and displacement or velocity and pressure. 

For flow visualization, food colour was injected through thin glass capillaries into 
the boundary layer on the lower nozzle wall and along the centre streamline between 
the plates well upstream of the nozzle. Also, dye was introduced by gravity at the 
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FIGURE 5. Pressure loading on the oscillating edge in the absence of jet flow for varying 

displacement amplitudes. 

exterior of the upper lip of the nozzle where i t  was subsequently entrained into the 
upper shear layer of the jet. The time records of the flow patterns were recorded with 
a video camera (Instar by Video-Logic) at a rate of 120 frames/s. 

The experimental data were acquired for one geometry (LIB = 9) and one Reynolds 
number (Re = 740). The varied parameters were the amplitude of oscillation 
7, = A/B and the excitation frequency f,, which was the major parameter for 
characterizing the response functions of the sinusoidal oscillation of the tip of the 
leading edge. The time records of measured pressure fluctuations on the edge surface 
were analysed in the frequency domain, as well as velocity signals along the jet 
centreline. 

The frequency fl of the self-sustained jet oscillations in the absence of edge 
oscillations is used for normalization of frequencies ; however, for discussion of flow 
visualization, the ratio f e / f o  also is employed. Although f o  is a dependent variable, 
the ratio f e / f o  is the physically meaningful parameter that allows interpretation of 
modulations of the flow structure. Strouhal numbers, e.g. S, = Bf,/U, are not 
introduced explicitly because frequency ratios are of primary interest in this 
experiment with external excitation; moreover we note that f,/g = Se/S,*. 

3. Pressure loading at the edge 
Controlled sinusoidal displacement of the edge a t  amplitude 7, and frequency f,, 

as defined by ( 5 ) ,  allowed detailed examination of the response of the jet oscillation 
to external excitation. Most experiments were performed a t  constant 7, while varying 
f, since the excitation frequency is the crucial parameter in determining the character 
of the shear-layer instabilities in the jet as well as the phase shift between the jet 
oscillations and the edge motion. 

I n  general, the time records of the measured pressure signals showed a beating wave 
form, where the beat frequency corresponded to  the difference between f, and fo. 
Spectral analysis of the signals showed the predominance of two frequency com- 
ponents at f, and f o ,  while amplitudes of higher harmonics, subharmonics and 
components at the sum/difference frequencies off, and f o  were small. Measured 
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amplitudes of the second harmonic of f,, which was the largest neglected term, was, 
at most, 20 % of the fundamental ; the second harmonic off, was at maximum 5 % 
of the fundamental. Also, since no measurable frequency modulations were detected 
for the two components, the pressure fluctuations can be approximated by 

(6) 

where p ,  and p ,  are the amplitudes of the pressure fluctuations at f, andf,. Pressures 
are generally non-dimensionalized with $IT, as shown in the subsequent graphs. 
However, in order not to complicate the presentation of equations, the ratio p/ ($IT)  
has not been introduced in equations. 

The phase angle Q is defined as the phase shift between the pressure fluctuation 
at f, on the lower edge surface and the displacement 7, defined by ( 5 ) ;  # was 
determined by the cross-spectrum between the pressure and the displacement signals. 

Since the phase angle # characterizes the phase shift between the local loading on 
the leading-edge region and the displacement, it provides an indication whether there 
is energy transfer from the flow to the oscillating edge or vice versa. If one dehes  
the sign of the localized loading with respect to the pressure fluctuations on the lower 
surface of the edge then there is energy transfer from the fluid to the body for 
0 < Q < x and 2x < Q < 3x, whereas the converse occurs for - x  < # < 0 and 

All constants defining the pressure fluctuation p ( t )  in (6), that is p, ,  p,, #, and also 
the frequency f, of the self-sustained component, are functions of the forcing 
frequency f, and of the amplitude of the tip displacement 7,. 

In the following, we first assess pressure fluctuations induced by non-circulatory 
or ‘added-mass ’ effects, associated with acceleration of the fluid surrounding the 
edge, by considering the oscillating edge in quiescent fluid. We then proceed to 
characterization of the pressures induced by the interaction of the jet with the 
oscillating edge. 

p ( t )  = p ,  cos 2xf0t + p ,  cos (2nje t + #), 

x < # < 2x.  

3.1. Pressure loading in the absence‘ of jet $ow 
The flow field and the pressure on the edge surface induced by oscillations of the edge 
in still water are essentially inviscid phenomena for the small amplitudes and 
frequencies of this study. From unsteady potential-flow theory we can show that the 
amplitude of the surface pressure a t  the excitation frequency f, is proportional to 
the amplitude of the displacement 7, and the square of the frequency f,: 

Pe = kPTe f Z 7  (7) 

where k is a geometry-dependent constant having the dimension of area. This 
relation, of course, is equivalent to the fact that the resultant force on the edge is 
proportional to edge acceleration. 

Figure 5 shows experimental data acquired for edge oscillations in the absence of 
flow through the jet nozzle. For all three amplitudes of oscillation, 7, = 0.07, 0.11, 
0.16, the amplitudes of the pressure fluctuations increase as the frequency squared 
in accord with (7). Furthermore, for constant frequency f,, the pressure amplitude 
increases linearly with the displacement amplitude 7,. From these measurements, the 
constant k of (7) was determined to have the value k = 2.1 m2 for the pressure tap 
located 1.26B downstream of the leading edge. 

The corresponding phase shift between the pressure and displacement was 
negligible. An observed small, negative phase shift, due to minor viscous effects, 
reached a value of -0.15 rad at the largest amplitude of oscillation. 
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As noted previously, amplitudes of pressure fluctuations, as in figure 5, were 
averaged from measurements on the lower and the upper surfaces, allowing mini- 
mization of measurement inaccuracies. From additional experiments, involving 
oscillations of the edge with rigidly covered pressure taps, we could determine 
contamination of measured and averaged pressures of less than f 2 % by signals 
induced through transducer vibration, edge deformation, or acceleration effects of 
the enclosed water mass between the transducer membrane and the pressure tap. 

3.2. Pressure loading on the stationary edge in the presence of the jet 
In the absence of edge oscillations, but in the presence of jet flow, self-sustained 
oscillations of the jet give rise to pressure fluctuations of the form: 

P ( t )  = Po cos 2 x g t ,  (8) 

which is a special case of (6), where pe = 0 andfo+$. The measurements of amplitude 
po for the stationary case are included in figures 6 ( b )  and 7 ( b ) .  Henceforth, we 
distinguish between $ and fo, representing respectively the self-excited oscillation 
frequency in the absence of, and in the presence of, external excitation; in general, 
fo differs from $ owing to alteration of the jet structure by excitation. For the 
Reynolds number and geometry investigated here, we measured$ = 1.50 Hz. This 
frequency remained constant for steady flow conditions once an equilibrium water 
temperature throughout the channel was achieved. Frequency modulations were less 
than f0.5%. The frequency g= 1.50 Hz corresponds to  a Strouhal number 
S,* = B$/U = 0.041, a value close to those found by other authors for comparable 
geometry and Reynolds number. 

3.3. Pressure loading on the oscillating edge in the presence of the jet 
In  the case of edge oscillations we expect, in the general case, two frequency 
components to be present (as shown in (6)). We first address the manner in which 
the parameters p,, p,, fo and q5 vary as a function of the dimensionless excitation 
frequency f,/g. In particular, attention is focused on resonance characteristics of the 
oscillating jet system including synchronization of the self-sustained jet oscillations 
with the external excitation; and recovery of the inherent jet instabilities above 
synchronization. 

Resonant response of the pressure Juctuations at the excitation frequency 
Intuitively, we expect a resonant response when the edge is oscillated at a 

frequency identical with that of the self-sustained jet oscillations. Indeed, figure 6 (a )  
shows a distinct resonance peak in the distribution of the pressure component p ,  for 
excitation frequencies near g, i.e. f,/$ x 1. The pressure p ,  decreases for low 
excitation frequencies and reaches zero for f, = 0. At f,/g x 2.5 the graph shows a 
second, broader maximum. Owing to the variation of f0/g with f,/g (discussed 
subsequently), this second maximum physically corresponds to three periods of the 
externally excited oscillation at f, within one period of the self-sustained oscillation 

Furthermore, at sufficiently high ratios off,/$ the non-circulatory or ‘added mass ’ 
contribution to the pressure fluctuation p ,  a t  frequency f, dominates, evidenced by 
the fact that  the data of figure 6(a )  approach the curve corresponding to no-jet flow; 
it is designated by the dashed line, which represents the data of figure 5. I n  essence, 
this means that the local interaction of the forced jet oscillations with the leading 
edge is not significant in determining the surface pressure amplitude a t  frequency f, 
for sufficiently high ratios f,/$. 

atfo. 
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FIGURE 6. Response characteristics of the pressure loading due to jetedge interaction showing : 
(a) externally excited pressure component p ,  ; (b)  self-excited pressure component p , ;  (c) frequency 
f, of the self-sustained jet oscillation; and (d )  phase d between the pressure fluctuations at fe and 
the displacement ~ ( t ) .  Amplitude of edge displacement qe = 0.16; Re = 740. 
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Quenching and recovery of self-sustained pressure fluctuations 
In  general, the self-excited pressure component p ,  will be present simultaneously 

with the externally induced component p,. However, as demonstrated in figure 6 ( b ) ,  
as the frequency ratio f,/g approaches 1, either from the higher or lower side, p, 
experiences rapid attenuation. Comparing with figure 6(a) in this same range, p ,  
undergoes a rapid increase in amplitude corresponding to onset of resonance. This 
range of dimensionless excitation frequency fe/g for which the edge oscillation 
synchronizes with the jet oscillation at the frequency f, and, therefore, only the 
component p ,  can be determined, is termed the ‘synchronization range’. In general, 
such synchronization can be obtained by either phaselocking the self-excited 
oscillation at f ,  to that of the forced oscillation at f , ,  or by simply attenuating the 
self-excited component down to zero amplitude. This second means of achieving 
synchronization is called ‘ quenching ’ according to Dewan (1972) and is further 
discussed for different flow oscillators by Staubli (1985). The plot of the data in 
figure 6 (b)  indicates that, for the jet oscillations under consideration here, 
synchronization is achieved by quenching because of the strong attenuation and 
eventual suppression of the pressure amplitude p,. This quenching of the self- 
sustained jet oscillation occurs at frequency ratios f,/g considerably lower or 
higher than f o / f e  = 1, as shown in figure 6 ( c ) .  

Figure 6 ( b )  further shows that for sufficiently high excitation frequency, f,/c > 2.5, there is recovery of the amplitude of the self-excited component p ,  to that 
of the stationary edge ( f ,  = 0). This recovery is particularly remarkable in view of 
the fact that the externally imposed pressure fluctuations p ,  a t  these high excitation 
frequencies have substantially larger amplitudes than those of the p ,  component. The 
physical mechanisms by which this recovery occurs, as well as the lack of influence 
on the self-sustained jet oscillations at very low excitation frequencies, are addressed 
subsequently in the section on flow visualization. 

Alteration of self-excited frequency in the presence of the oscillating edge 
In  general, the self-excited oscillation frequency f ,  of the jet in the presence of edge 

oscillation deviates from the self-excited frequency fl in the absence of external 
excitation. Figure 6(c) shows that for sufficiently low frequency ratios, f,/g -= 0.7, 
the frequency f ,  of the pressure component p ,  is relatively uninfluenced by the 
excitation. The largest influence occurs on the right-hand side of the synchronization 
range where the self-excited frequency deviates up to a maximum of 30 % from the 
frequencyc. The ratio f,/g is always lower than unity and recovers to a value of 
one as the excitation frequency increases. In  certain ranges the self-sustained jet 
oscillation adjusts itself such that integer frequency ratios f o / f ,  are maintained, that 
is f o / f ,  = 1/3 or 1/4. In other words, over certain ranges of the excitation frequency, 
the frequency ratio ‘locks-on’ to one of the f o / f e  characteristics. These ranges 
correspond to local maxima in the pressures p ,  and/or p ,  shown in figure 6 (a,b). The 
associated structure of the jet will be described subsequently. 

It is important to emphasize here that, near synchronization, the data do not 
approach the line f ,  = f ,  in figure 6 ( c ) .  This means that not only is the self-excited 
component at f, attenuated at the onset of synchronization (figure 6 b), but also there 
is no coalescence of the self-excited frequency f ,  and the excitation frequencyf,. This 
observation allows us to more precisely define the type of quenching as ‘asynchronous 
quenching’ (Dewan 1972). 



Interaction between unstable planar jet and oscillating leading edge 147 

Phase shift of pressure jluctuations relative to edge displacement 
As the excitation frequency changes, there is a phase shift between the locally 

induced loading at f, relative to the edge displacement ye (see ( 6 ) ) .  Figure 6 ( d )  
displays the phase 9 of the pressure component p ,  as a function of f,lfl. There is 
a strong gradient of this phase distribution as the excitation passes through the 
synchronization range. Such gradients are typical of linear or nonlinear systems 
undergoing resonance. On the other hand, for f,/g > 3.5, the phase remains at a value 
near zero owing to dominance of the non-circulatory (added-mass) effects. The sharp 
drop in the phase of the order of 7c at a frequency ratio f,/g = 1.7, i.e. at ratio 
f,/fo = 2.5, is accompanied by a drop in amplitude of the pressure component p ,  
(figure 6 a ) .  In view of the fact that there is a phase jump, but nearly zero amplitude, 
one might call this region one of ‘ pseudoresonance ’. 

Effect of displacement amplitude on the response characteristics 
The response of the jet to forced oscillations of the edge was investigated for two 

additional amplitudes of oscillation, 7, = 0.11 and 0.07. These smaller amplitudes 
were chosen because for sufficiently small excitation levels the onset of synchron- 
ization changes from ‘asynchronous quenching ’ to ‘phaselocking ’, and the two 
frequency components coalesce to the excitation frequency as synchronization is 
approached. This change in character in the onset of synchronization is expected 
because there is a lower limit in the amplitude of excitation, below which the 
self-sustained oscillations can no longer be attenuated or quenched. Physically, 
phaselocking means a systematic phase advancement or retardation of the self- 
sustained jet oscillation such that the two frequencies f, and fo coalesce and both 
components, the forced and the self-excited, contribute to the pressure fluctuations 
at  the same frequency, i.e. f,. 

Figures 7 (a ,  b,c,d) shows a comparison of response characteristics of the pressure 
at edge amplitudes 7, = 0.07, 0.11 and 0.16. Comparing the three cases of displace- 
ment amplitude, there are substantial differences in pressure amplitudes p ,  only for 
high excitation frequencies, figure 7 (a). These differences are explained by the linear 
dependency of the non-circulatory (added-mass) contribution to the pressure on 
changes in displacement amplitude (see figure 5). The resonant pressure amplitudes 
p ,  within the synchronization range ( f,/E x 1)  show only minor changes due to the 
reduced displacement amplitude. 

The effect of reduction in excitation amplitude 7, on the self-excited component 
p ,  (figure 7 b) is more pronounced, especially near synchronization. As expected, when 
ve is reduced, ‘the attenuation of p ,  at the onset of synchronization is reduced and 
the actual range of synchronization gets smaller. In fact, for 7, = 0.07, there is no 
indication of complete suppression of p, .  Concerning the frequency f, of the 
self-excited component, figure 7 (c) shows that the measured data points approach 
more closely the line fo = f, at lower amplitudes of displacement. This coming 
together of the two frequencies near synchronization, along with the smaller 
attenuation of the self-excited pressure, suggests that the character of the onset of 
synchronization changes from asynchronous quenching to phaselocking at the 
smallest investigated displacement amplitude of the edge. 

Figure 7 ( d )  shows the phase angle q5 between the pressure component p ,  and the 
edge displacement 7,. This phase shows astonishingly small dependence on displace- 
ment amplitude even though the latter varies by more than a factor of two, thereby 
indicating only minor nonlinearities of the excited component p ,  with changes in 
displacement amplitude 7,. 
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from the flow to the edge; E + r  = energy transfer from the edge to the flow. 

q5 between the pressure fluctytions at f, and the displacement q ( t ) .  E d + r = local energy transfer 
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4. Phase characteristics of a jet approaching the oscillating edge 
Spectral analysis of the velocity field of the modulated instability wave incident 

upon the edge showed dominance of the same two frequency componentsf, and f, 
as in the pressure fluctuations. A t  a given location z along the centreline of the jet, 
one may represent the transverse velocity fluctuation v as 

(9) v(z, t ’ )  = uo COB (e,(z) - 2nf0 t ’ )  + v, cos ( e , ( X )  - 2qe t ’ ) .  

The phases O,(x)  and O,(z) are the phase angles between the local velocity 
fluctuations and the reference pressure fluctuations po  and p, on the edge at  
frequenciesf, andf, respectively. In (9) we have introduced the time t’, which bears 
the following relation to the time associated with the displacement signal : 

where 9 is the phase shift between pressure component p, and displacement 7,. The 
time t’ is employed because the phase difference between the velocity and pressure 
fluctuations is physically more significant than that between velocity and displace- 
ment. The change of sign indicates waves travelling in the positive x-direction. In 
the experiment, the phases O,(z) and Oe(x) were determined from cross-spectra 
between the velocity fluctuations at various z locations along the centreline and the 
pressure fluctuations at the edge. 

Figure 8 shows the phase variation O,(x)-O,(O) of the self-excited velocity 
component vo at frequency fo for different excitation frequencies f,; O,(O) is the phase 
of the initial velocity fluctuation at the nozzle exit. The phase O,(z) does not grow 
linearly with x indicating wave non-homogeneity. For the stationary edge this 
observation has already been made by Shields (1967). Even though the jet is 
subjected to forced oscillations of substantial amplitude (7, = 0.16), the phase 
distribution O,(z) of the self-sustained jet oscillations experiences insignificant 
alteration with f,/fi. This observation is somewhat surprising in view of the strong 
variations of frequency fo and pressure p, near synchronization (figure 6b,c) as well 
as of the substantial changes in the structure of the jet (figures 13-20). This relative 
invariance of O,(x) means also that the overall phase difference of the self-sustained 
jet oscillation remains essentially unaltered. However, since the self-excited fre- 
quency fo changes with f,/fi (see figure 6c) the local phase speed of the self-excited 
component, cv,(z) = 2xf0/d0,(x)/dx, does undergo substantial modification withfe/fi, 
especially in the region just above synchronization. 

Figure 9 shows the streamwise variation of the phase O,(x) - O,(O) for the velocity 
component v, at the excitation frequency f,. A t  low frequency ratios f,/fi, we observe 
the same non-homogeneous character of the wave as was found for the self-excited 
component. For synchronization, f,/$ = 1 ,  the measured phase curve is identical 
with the one measured for the stationary edge (figure 8). From mean slopes of the 
measured curves an averaged non-dimensional phase speed can be estimated : 

2nfe = 0.36. A=-- c 2xfe - 
U Uk U(dO,/dz) 

The wavenumber k, given by the mean slopes in figure 9, is therefore proportional to 
the excitation frequency. A t  higher excitation frequencies, several wavelengths 
(6x = 3 x 2x = 3 wavelengths) of the forced jet oscillations can be observed over the 
impingement length and the phase distribution 8Jx) takes on a stepwise distribution. 
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FIGURE 10. Comparison between phase variations computed with superpositions model 
(solid lines) and measured data points (circles). 

This stepwise distortion suggests superposition of contributions from both the 
downstream-travelling instability wave, which we term a ‘ vorticity wave ’ (subscript 
v), and the irrotational fluctuation field induced by the pressure fluctuations on the 
edge surface, denoted as ‘induced velocity’ (subscript i) in the spirit of Powell’s 
(1961) dipole-induced velocity fluctuations. Since the dimensionless frequencies 
fe L/a  (a = speed of sound in water) are very low, the flow field is essentially 
incompressible and, therefore, there will be no streamwise phase variation of the 
induced velocity. Using the concept of superposition, we can represent the transverse 
velocity fluctuation at frequency fe (second term of (9)) along the jet centreline as 

v, cos (Oe(x)-2nfet’) = vi cos (8,,-2nfet’)+vv cos (e,,+Ov(z)-27rfet’). (12) 
‘induced velocity ’ vorticity wave ’ 

The phase angle O,, is the phase of induced velocity relative to the pressure 
fluctuations on the edge. 

To simplify the computations, while still retaining the basic concept of the 
superposition model, we further assume that: (a) the ratio q/v, is constant over x; 
(b)  the phase speed, cve = 2nfe/k, of the vorticity wave is constant over x and 
independent of fe; and (c) Ov(0) = O,,. Putting (12)  in explicit form for the phase 
Oe(z), and employing the above assumptions, gives 

Vi/VV + cos (2nfe x/cv,)  

sin (2nfe x/cv,) 
Oe(z) = O,,+arccot 

The calculated distributions and the corresponding measured values of 
Oe(x) - O e ( 0 )  are displayed in figure 10. The relatively good agreement was attained 
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by empirically choosing the same dimensionless phase velocity of the vorticity wave, 
eve/ U = 0.36, for all excitation frequencies. 

As noted in conjunction with figures 8 and 9, the wave character is non- 
homogeneous. The superposition-model explains this non-homogeneity well for high 
excitation frequencies and to a degree for low excitation frequencies; more accurate 
simulation requires accounting for the streamwise variation of phase speed, especially 
for frequency ratios fe/g < 1.5. Moreover, it  should be noted that increasing the ratio 
vi/v, for increasing fe/E (see figure 10) provided a better fit of the computed curves 
to the measured data. This trend is because the pressure loading upon the edge 
induces a velocity amplitude vi that varies, away from synchronization, as vi - f:, 
whereas the amplitude v, of the vorticity wave is relatively invariant with f, (for 
f,/g < 1.5) because of the rapid nonlinear saturation of the amplifying disturbances. 
The ratio vi/v, dictates the severity of the sudden distortions in the phase distri- 
butions; ratios larger than unity (dashed lines) produce vertical jumps, agreeing well 
with the discontinuity in the measured data. Whereas the ratio vi/v, is responsible 
for the degree of distortion of the phase with x, the phase speed cve determines the 
average slope of the phase variation. 

Regarding the values of the phase angle a t  the nozzle exit, i t  was assumed that 
the velocity fluctuations vi at frequency f, induced by the pressure loading and the 
velocity fluctuations v, arising from the vorticity wave are in phase a t  the nozzle, 
that is O,(x) = Boo in (12). At x = 0, the phase OJx) of the resultant velocity component 
at f, in (12) is O,(O)  = Boo, as can be derived from (13). The fact that the predicted 
locations of the sudden changes in phase agree well with the experimental data 
substantiates this assumption, indicating that the measured local pressure is rep- 
resentative of the loading on the edge and of the source of upstream influence. 

Encouraged by the success of the above phase assumption in our model for velocity 
fluctuations at the excitation frequency f, in (12), we further assume that the same 
phase of Boo exists for the self-sustained jet oscillations at frequency f,; as a result 
one can rewrite (9), evaluated at the nozzle exit (x = 0) ,  as 

v(o, t o  = vo cos (coo - 2q-0 t ’ )  + ve cos (Boo - 2.nfe q. (14) 

The initial phase Boo at the nozzle exit can be verified by measurements of O,(O) and 
Bo(0). The variation of the measured phases for both the self-excited and the forced 
velocities at the nozzle exit, as a function of excitation frequency, is given in 
figure 1 1 .  The phases Oo(0) and O,(O) are remarkably invariant and group with some 
scatter around the value of -in. The deviation is highest near synchronization where 
there is a large gradient in the phase distribution of the pressure p ,  (figure 6 d ) .  I n  
$ 1  we deduced, from potential-flow considerations, a phase ofOoo = -+a between the 
velocity induced at the nozzle by the upstream influence of the pressure loading 
a t  the leading edge, which is basically confirmed by the measurements shown in 
figure 11.  

I n  conclusion, the foregoing phase relation at the nozzle exit shows that the 
mechanism of upstream influence can be explained by an induced velocity a t  the 
nozzle exit whose time derivative is proportional to the fluctuations of the loading 
upon the edge. For the sinusoidal components in which the time records were 
decomposed here, there is a phase shift of -in between the velocity fluctuation and 
the loading for each of the fluctuation components. The generalized formulation that 
the time derivative of the initial transverse velocities is proportional to the pressure 
loading upon the edge can be expected to be true also for other types of edge 
displacement than the sinusoidal oscillations considered in this study. 
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5. Visualization of flow structure 
The flow structure of the interaction of the jet with the oscillating leading edge 

was visualized by dye streaklines marking the jet undulations and the process of 
vortex formation at  the self-excited frequency fo, as well as at the excitation 
frequency f,. The jet structure was visualized in the synchronization range, where 
the flow pattern repeats after each cycle of edge oscillation, as well as at frequencies 
below and above synchronization where there are modulations according to the 
occurrence of the two frequency components at f, and f,. 

The frequency ratios f,/E selected for visualization are designated in figure 12 on 
plots ofp,, p, andp, sin $. Since 9 is the phase angle between the pressure fluctuation 
p, and the edge displacement n(t), p, sin $ represents the pressure component that 
is in phase with the edge velocity. When p, sin $ is positive, there is a local transfer 
of energy from the edge to the fluid and when i t  is negative, there is a transfer 
of energy from the fluid to the edge. In selecting the frequency ratios f,/g 
for visualization, several points were chosen within the synchronization range 
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(C, D, E, F). These points cover a range with strong changes in 4 (see also figure 6 d )  
and include the points with maximum positive and negative energy transfer (C 
and E). Further points were selected below (B) and well above Synchronization 
(G, H and I). As a reference case, the self-sustained jet oscillations with the stationary 
edge (A) was chosen. 

I n  general, i t  is possible to classify the jet structure into the following categories: 
self-sustained, ‘natural ’ jet oscillations for the stationary edge ; modulation of the 
jet structure below synchronization ; jet oscillations synchronized with the edge 
oscillations; and modulation above synchronization. Within the synchronization 
range, visualization shows the possibility of attenuating the jet oscillation, corre- 
sponding to  the case of maximum energy transfer from the fluid to the edge. More- 
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over, recovery of the large-scale structure to that of the stationary edge can occur for 
modulation of the flow structure above synchronization. In  the following, we 
characterize in detail the jet structure corresponding to these various regimes. 

5.1. Regimes of pow structure of jet-oscillating-edge interaction 
In characterizing the possible flow regimes as a function of frequency ratio f,/g, we 
employ the case of the stationary edge as a reference (figure 13). In  the subsequent 
photo series, the time interval between photos corresponds to either one quarter of 
the externally excited period T, = l/f, or one quarter of the self-excited period 

= l/fo. All photo sequences showing the oscillating edge start with the edge at the 
maximum positive displacement. This phase reference for each photo sequence allows 
cross-comparison between the flow patterns at different excitation frequencies within 
the synchronization range. 

For excitation below or above synchronization, there are modulations of the flow 
structure arising from coexistence of jet undulations at f, and fo ; consequently both 
periods, T, and T, must be considered for comparison. 

Interaction of the jet with the stationary edge: self-sustained jet oscillations 
The photographs of figure 13, corresponding to case A (figure 12), represent the 

interactions of the jet with the stationary edge, i.e. f,/E = 0. Over the cycle of jet 
oscillation, there is a rapid growth of the inherent shear-layer instability of the jet 
leading to formation of a primary vortex ; interaction of the jet with the leading edge 
gives rise to a secondary, counter-rotating vortex; and in turn, the primary and 
secondary vortices form a vortex pair. This counter-rotating vortex pair subsequently 
moves downstream and away from the surface of the edge. Concerning the corre- 
sponding pressure fluctuation at the surface of the edge, maximum positive pressure 
occurs on the lower surface of the tip, at approximately t = 0, again appearing after 
one period, i.e. 4/4 T,*. Simultaneously, there is at t = 0 a pressure minimum along 
the upper surface, associated with the onset of separation there (Kaykayoglu & 
Rockwell 1986). 

Modulation of the jet etructure at lour excitation frequencies 
The lower set of photos in figure 14, representing case B (figure 12), shows 

modulation of the jet oscillation due to coexistence of the two frequencies f, and fo;  
the frequency ratio is fe/fo = f,/E = 213. At t = 0 the edge is at maximum positive 
displacement and, correspondingly, for 2/4 T, at maximum negative displacement. 
The period of this modulated jet oscillation is T = 2Te = 3%. The flow patterns are 
remarkably repetitive at this period T. If we trace the three periods of the 
self-sustained oscillation in this series of photographs, we can compare the following 
pictures with the stationary case of figure 13: 

Case A Case B 
t = 0; 414 c * t = 0; 1214 T, (814 T,) 
114 5"': c* 914 T, (614 Te) 

314 C * 314 (214 Te) 
214 T: * 614 T, (414 T,) 

This comparison of the self-sustained jet oscillation, with and without edge oscilla- 
tion, indicates the changes in the flow patterns due to the edge motion; however, i t  
is evident that the basic structure in case B is dominated by the self-sustained 
oscillation. 

6 Y L M  176 
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Synchronization 
The photo sequences of figures 15 and 16, taken within the synchronization range, 

represent cases C, D, E and F (figure 12). Here, the edge oscillations control the jet 
oscillations and we expect repetitive flow structure after each cycle of edge 
oscillation. In figure 15, case C, with a frequency ratio f e / f o  = 0.87, represents the 
situation of marginal synchronization at the lower limit of the synchronization range. 
The photos show that the flow structure is indeed repeatable with the period T, of 
the edge oscillation. Particularly interesting is the fact that for this excitation 
condition, the growth of the jet instability is actually retarded relative to case A of 
the stationary edge. Comparing respective photographs of cases A and C shows that 
roll-up of the primary vortices occurs further downstream for case C relative to case 
A. As shown in figure 12, case C represents the oscillation frequency where there is 
a maximum energy transfer from the flow to the surface of the edge. The energy 
extraction from the flow oscillation in this case actually retards the growth of the 
jet instability owing to an appropriate phase shift of the edge motion and the jet 
oscillation. Therefore, at this excitation condition, we can interpret the oscillating 
edge as an active damping element for the flow oscillation. 

Figure 16 compares three cases, D, E and F, lying within the synchronization range. 
In  general, the structure of the jet at these excitation frequencies is very similar to 
that of the stationary edge. Despite the onset of resonance of the pressure amplitude 
p, over this range (figure 12), the basic jet structure undergoes insignificant alteration 
relative to the stationary edge (case A in figure 15). The phase 4 between the pressure 
fluctuation p ,  and the edge displacement re, as shown in figure 6(d), also undergoes 
dramatic changes since the cases D, E, F lie within the phase jump. That is, for the 
frequency ratios f,/g = 1,  1.07 and 1.13, the respective phase angles are 4 = 6.27, 
5.69 and 5.24; thus the phase difference between D and E is x -in and between D 
and F x -in. Examining the photos of cases D, E and F at the same instant during 
the cycle, e.g. a t  2/4T, showing a vortex on the upper surface of the edge, it is evident 
that the locations of corresponding vortices move upstream with increasing excitation 
frequency, explaining the observed negative phase shift. 

Modulation of jet structure at excitation frequencies above gynchronizution 
Figure 17 shows a representative case of jet modulation at high excitation 

frequency, designated as case G (f,/g = 2.13) in figure 12. Here the excitation 
frequency is three times the self-excited frequency, f,/fo = 3. In other words, three 
cycles of externally imposed oscillations are required for one complete cycle of the 
modulated jet structure. The modulation period is T = 3% = T,. 

As expected, the forced vortices have shorter wavelength and mature more rapidly 
than at lower excitation frequencies, thereby allowing coalescence of vortices of the 
same sign, e.g. at t = 9/4%. The fact that the coalescence pattern of the forced 
vortices undergoes modulation indicates the presence of self-sustained jet oscillations. 
The streaklines of certain incident vortices are cut by the tip of the edge. 

A t  still higher frequency of excitation, corresponding to case H in figure 18, the 
wavelength of the forced instabilities of the jet further decreases and the vortex 
formation appears closer to the nozzle exit. In this case, short time periodicity (i.e. 
small T) of the flow pattern does not occur since the ratiof,/g cannot be described 
as a ratio of two small integer numbers, in contrast to the foregoing case. The 
theoretical frequency for repeating flow patterns would be T = lOT, = 3T,, which 
cannot be seen in figure 18 since only three periods of T, are shown in the sequence 

6-2 
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of photos. However, a distinct feature of the jet oscillation is that every third vortex 
on a given side of the jet passes to the opposite side of the edge, e.g. at  t = 314% 
or 10/4Te. For the region of the flow field upstream of the leading edge, this basic 
vortex pattern approximately exhibits a periodicity of 3%, as is evident from the 
comparison of the photos at  t = 0 and 12/4T,. 

At the highest excitation frequency considered for visualization, corresponding to 
case I (figure 12), there are approximately 3 wavelengths of forced vortices within 
the impingement length, as shown in figure 19. In this case the frequency ratio is 
fe/E = 4 x fe/fo providing a period T = 4T, = for repetition of the flow patterns. 
In this example, every fourth vortex from a given side of the jet passes to the opposite 
side of the leading edge. Particularly distinctive is the formation of a large-scale, 
counter-rotating vortex pair near the leading portion of the edge involving coales- 
cence of three vortices of the same sign, which arrange into a pair with a vortex of 
opposite sense from the opposite shear layer. This vortex of opposite sense embodies 
the secondary vortex and obviously is fed with vorticity from the jet - leading-edge 
interaction on its motion downstream of the tip of the edge. 

Recovery of self-sustained jet oscillations 
According to figure 6 (b, c ) ,  the frequency of the self-sustained oscillation, as well 

as the corresponding pressure amplitude p ,  are essentially uninfluenced by external 
excitation of the jet oscillation for excitation frequencies of fe/E 2 4. Flow visualiz- 
ation in this regime shows vortex formation in accord with coexistence of the two 
frequency components f, and f,. Closer examination of selected photographs in 
figure 19 shows that, at certain instants, the large-scale vortex patterns are quite 
similar to those of the self-sustained oscillations in figure 13, representing case A. 

Figure 20 gives a direct comparison of the cases A ( fe/E = 0) and I ( fe/C = 4) over 
one cycle of the self-sustained jet oscillation. Comparing, for example, the large-scale 
vortex structure on the upper side of the edge, i t  is evident that the rapid vortex 
coalescence in case I leads to a vortex pair very similar to that in case A. Moreover 
other features, such as the deflection of the jet stem upstream of the leading edge, 
are quite similar at comparable instants during the cycle of the self-sustained jet 
oscillation. Consequently, we may conclude that coalescence of small-scale vortices 
leads to recovery of the large-scale, self-sustained jet oscillation. 

Modulation frequency of the jet structure 
In figures 13-20, we have addressed various features of the modulated jet structure 

for excitation frequencies below and above synchronization. On the basis of these 
observations, it is possible to put forth a simple relation which, in essence, states that 
the periodicity of the modulated flow pattern is determined by the smallest common 
multiple of the self-excited and the forced periods, T, = l/fo and T, = l/fe. In other 
words 

T = n T , = m T e = q / ( f , - f e l ,  n , m , q =  1 , 2 , 3 , 4  ..., 
where n is the number of self-excited periods within T ,  m is the number of externally 
excited periods within T and q = In-ml is the number of beat periods within T .  

Close examination of a number of periods T, over the range of excitation conditions, 
in addition to the selected sequences shown here, shows for short T o r  small In-mi, 
the foregoing relation is consistently valid. However, for long periods T, the flow 
patterns are not precisely repetitive indicating that there is minor frequency 
modulation of the frequencyf,. This frequency modulation is small, evidenced by the 
absence of observable broadening of peaks in the power spectra of the pressure 
measurements. 
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Summary of ,flow visualization 
Characteristic of the low-frequency excitation is the fact that the typical wave- 

length of the forced jet oscillation becomes considerably larger than the impingement 
length L, e.g. forfe/$ = 0.67 there is only 4 a wavelength within L, aa can be seen 
in figure 9 from the fact that Oe(L)-Oe(O) = IC. Further decrease of the excitation 
frequency will lead to even larger wavelength of the forced jet oscillations. At the 
same time there is, for the self-sustained oscillation, about of a wavelength within 
L. Since the excitation level, in terms of surface pressure fluctuations at the excitation 
frequency, also becomes very small at these low excitation frequencies, we observe 
a simple modulation of the self-sustained jet structure about a base structure. 
Figure 14 shows an example of the modulated structure at excitation frequencies 
below synchronization. Comparing the flow structure at low excitation frequency, 
case B, with the stationary case, case A, we see that the excitation causes momentary 
retardation of the self-sustained vortex formation (i.e. compare the small vortex 
structures at 314% of case B with those at 314% of case A, and at 614% of case B 
with those at 214% of case A) or it causes enhancement of the vortex formation (i.e. 
compare the large vortex structures at 614% of case B with those at 2/4q of 
case A). 

Regarding the structure of the jet at high-frequency excitation, the photos of 
figures 17, 18 and 19 show substantial alteration of the jet structure relative to the 
stationary edge shown in figure 13. At higher frequency, the wavelength and the 
vortex scale become smaller and maturation of the vortex formation appears closer 
to the nozzle exit. For case G, the effect of the interaction is to hasten the coalescence 
of two adjacent vortices on the same side of the shear layer; meanwhile, the vortex 
of opposite sense from the opposite shear-layer is swept beneath the edge. For case H, 
corresponding to somewhat higher excitation frequency, this vortex coalescence 
is actually prevented by the fact that a vortex of opposite sense is swept to the same 
side of the edge; although it rapidly becomes undistinguishable, it  preserves the 
spacing between two adjacent vortices. At still higher frequencies, case I, there is 
rapid coalescence of two vortices of like sense on the same side of the jet; the 
distinguishing feature of this interaction is that the vortex of opposite sense on the 
far side of the jet is swept to the upper side of the edge and grows in scale to arrange 
into a pair of counter-rotating vortices with the coalesced vortices. Concerning this 
coalescence, we note an interesting analogy with the phenomenon of collective 
coalescence as i t  has been assessed by Rockwell (1983) and Ho & Huang (1982) in 
free shear-layers of very long streamwise extent, whereby large-amplitude, low- 
frequency forcing causes several small-scale vortices to collect together. In  figure 19, 
however, it  is actually the self-excited jet oscillation at fo that drives the ‘collective 
coalescence ’ of the small-scale vortices induced at f,. 

With respect to the energy transfer from the flow to the oscillating edge, we have 
seen that it reaches a maximum in the lower onset of synchronization. Flow 
visualization reveals that oscillation of the edge at the corresponding excitation 
frequency extracts not only energy from the flow oscillation but also leads to retarded 
growth of the jet instability, as shown in figure 15. 

6. Conclusions 
The flow structure arising from the interaction of a planar jet impinging upon an 

oscillating leading edge has been investigated by flow visualization, velocity 
measurements, and by pressure measurements. All three techniques reveal that the 
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self-sustained jet instability and the externally excited jet oscillation generally 
coexist simultaneously. Furthermore, there is a limited synchronization range where 
only one frequency component can be detected and where the flow pattern repeats 
exactly with the period of the edge oscillation. At the onset of synchronization the 
self-sustained jet oscillations are attenuated and eventually disappear at a frequency 
different from that of the excitation as can be seen from pressure and velocity 
measurement for the larger displacement amplitudes. For the smallest investigated 
amplitudes of edge displacement, the extent of the synchronization range becomes 
smaller and phaselocking is the mechanism leading to synchronization. Within the 
synchronization range resonance of the pressure component at the excitation 
frequency is observed. This resonance is accompanied by a strong gradient in the 
phase q5 of the pressure fluctuations p ,  relative to the edge displacement. The phase 
angle q5 indicates the sign of the local energy transfer from the flow to the edge. In  
the case of maximum energy transfer from the flow to the edge, flow visualization 
shows that edge oscillation can actually dampen the jet oscillations. 

Streamwise phase variations on the jet centreline indicate non-homogenous wave 
propagation and are, for the self-sustained jet oscillation, remarkably invariant with 
respect to the excitation frequency. The phase variation of the externally excited 
oscillation shows, for the higher excitation frequencies, stepwise phase distortion. 
This stepwise distribution in the phase of the transverse velocity component at the 
excitation frequency and, to a degree, also the non-homogeneous phase variation of 
the self-sustained component, are explained by superposition of contributions from : 
the velocity fluctuation of the downstream-travelling instability wave ; and the 
upstream-induced velocity fluctuation originating in the pressure loading on the edge. 
At  the nozzle exit, where the upstream influence dominates, we measure a #c phase 
shift of the velocity fluctuations relative to the pressure fluctuations on the edge 
surface, agreeing with Powell’s (1961) concept of upstream-induced velocities. 
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